19 research outputs found

    Abundance of ACVR1B transcript is elevated during septic conditions: perspectives obtained from a hands-on reductionist investigation

    Get PDF
    Sepsis is a complex heterogeneous condition, and the current lack of effective risk and outcome predictors hinders the improvement of its management. Using a reductionist approach leveraging publicly available transcriptomic data, we describe a knowledge gap for the role of ACVR1B (activin A receptor type 1B) in sepsis. ACVR1B, a member of the transforming growth factor-beta (TGF-beta) superfamily, was selected based on the following: 1) induction upon in vitro exposure of neutrophils from healthy subjects with the serum of septic patients (GSE49755), and 2) absence or minimal overlap between ACVR1B, sepsis, inflammation, or neutrophil in published literature. Moreover, ACVR1B expression is upregulated in septic melioidosis, a widespread cause of fatal sepsis in the tropics. Key biological concepts extracted from a series of PubMed queries established indirect links between ACVR1B and "cancer", "TGF-beta superfamily", "cell proliferation", "inhibitors of activin", and "apoptosis". We confirmed our observations by measuring ACVR1B transcript abundance in buffy coat samples obtained from healthy individuals (n=3) exposed to septic plasma (n = 26 melioidosis sepsis cases)ex vivo. Based on our re-investigation of publicly available transcriptomic data and newly generated ex vivo data, we provide perspective on the role of ACVR1B during sepsis. Additional experiments for addressing this knowledge gap are discussed

    IP-10 response to RD1 antigens might be a useful biomarker for monitoring tuberculosis therapy

    Get PDF
    Background There is an urgent need of prognosis markers for tuberculosis (TB) to improve treatment strategies. The results of several studies show that the Interferon (IFN)-Îł-specific response to the TB antigens of the QuantiFERON TB Gold (QFT-IT antigens) decreases after successful TB therapy. The objective of this study was to evaluate whether there are factors other than IFN-Îł [such as IFN-Îł inducible protein (IP)-10 which has also been associated with TB] in response to QFT-IT antigens that can be used as biomarkers for monitoring TB treatment. Methods In this exploratory study we assessed the changes in IP-10 secretion in response to QFT-IT antigens and RD1 peptides selected by computational analysis in 17 patients with active TB at the time of diagnosis and after 6 months of treatment. The IFN-Îł response to QFT-IT antigens and RD1 selected peptides was evaluated as a control. A non-parametric Wilcoxon signed-rank test for paired comparisons was used to compare the continuous variables at the time of diagnosis and at therapy completion. A Chi-square test was used to compare proportions. Results We did not observe significant IP-10 changes in whole blood from either NIL or QFT-IT antigen tubes, after 1-day stimulation, between baseline and therapy completion (p = 0.08 and p = 0.7 respectively). Conversely, the level of IP-10 release to RD1 selected peptides was significantly different (p = 0.006). Similar results were obtained when we detected the IFN-Îł in response to the QFT-IT antigens (p = 0.06) and RD1 selected peptides (p = 0.0003). The proportion of the IP-10 responders to the QFT-IT antigens did not significantly change between baseline and therapy completion (p = 0.6), whereas it significantly changed in response to RD1 selected peptides (p = 0.002). The proportion of IFN-Îł responders between baseline and therapy completion was not significant for QFT-IT antigens (p = 0.2), whereas it was significant for the RD1 selected peptides (p = 0.002), confirming previous observations. Conclusions Our preliminary study provides an interesting hypothesis: IP-10 response to RD1 selected peptides (similar to IFN-Îł) might be a useful biomarker for monitoring therapy efficacy in patients with active TB. However, further studies in larger cohorts are needed to confirm the consistency of these study results

    Discriminating Active from Latent Tuberculosis in Patients Presenting to Community Clinics

    Get PDF
    BACKGROUND Because of the high global prevalence of latent TB infection (LTBI), a key challenge in endemic settings is distinguishing patients with active TB from patients with overlapping clinical symptoms without active TB but with co-existing LTBI. Current methods are insufficiently accurate. Plasma proteomic fingerprinting can resolve this difficulty by providing a molecular snapshot defining disease state that can be used to develop point-of-care diagnostics. METHODS Plasma and clinical data were obtained prospectively from patients attending community TB clinics in Peru and from household contacts. Plasma was subjected to high-throughput proteomic profiling by mass spectrometry. Statistical pattern recognition methods were used to define mass spectral patterns that distinguished patients with active TB from symptomatic controls with or without LTBI. RESULTS 156 patients with active TB and 110 symptomatic controls (patients with respiratory symptoms without active TB) were investigated. Active TB patients were distinguishable from undifferentiated symptomatic controls with accuracy of 87% (sensitivity 84%, specificity 90%), from symptomatic controls with LTBI (accuracy of 87%, sensitivity 89%, specificity 82%) and from symptomatic controls without LTBI (accuracy 90%, sensitivity 90%, specificity 92%). CONCLUSIONS We show that active TB can be distinguished accurately from LTBI in symptomatic clinic attenders using a plasma proteomic fingerprint. Translation of biomarkers derived from this study into a robust and affordable point-of-care format will have significant implications for recognition and control of active TB in high prevalence settings

    A protocol for extraction of total RNA from finger stick whole blood samples preserved with TempusTM solution

    No full text
    Monitoring of blood transcriptional changes during disease or treatment could improve the understanding of cellular mechanisms associated with that particular condition. This can be achieved through serial sampling of small blood volumes. However, molecular analysis of gene expression from low volume samples remains a challenging task. To address this issue, we have developed a set of standard operating procedures (SOP), starting from collection of small volume blood to measurement of gene expression. Previously we published an SOP for the collection of a small volume of blood via finger stick and stabilization of RNA. The aim of this manuscript is to share a modified Tempus TM solution based RNA extraction method, developed in our lab, for the extraction of total RNA from low volume whole blood samples collected via finger stick

    Cohort profile: molecular signature in pregnancy (MSP): longitudinal high-frequency sampling to characterise cross-omic trajectories in pregnancy in a resource-constrained setting.

    Get PDF
    PURPOSE:A successful pregnancy relies on the interplay of various biological systems. Deviations from the norm within a system or intersystemic interactions may result in pregnancy-associated complications and adverse pregnancy outcomes. Systems biology approaches provide an avenue of unbiased, in-depth phenotyping in health and disease. The molecular signature in pregnancy (MSP) cohort was established to characterise longitudinal, cross-omic trajectories in pregnant women from a resource constrained setting. Downstream analysis will focus on characterising physiological perturbations in uneventful pregnancies, pregnancy-associated complications and adverse outcomes. PARTICIPANTS:First trimester pregnant women of Karen or Burman ethnicity were followed prospectively throughout pregnancy, at delivery and until 3 months post partum. Serial high-frequency sampling to assess whole blood transcriptomics and microbiome composition of the gut, vagina and oral cavity, in conjunction with assessment of gene expression and microbial colonisation of gestational tissue, was done for all cohort participants. FINDINGS TO DATE:381 women with live born singletons averaged 16 (IQR 15-18) antenatal visits (13 094 biological samples were collected). At 5% (19/381) the preterm birth rate was low. Other adverse events such as maternal febrile illness 7.1% (27/381), gestational diabetes 13.1% (50/381), maternal anaemia 16.3% (62/381), maternal underweight 19.2% (73/381) and a neonate born small for gestational age 20.2% (77/381) were more often observed than preterm birth. FUTURE PLANS:Results from the MSP cohort will enable in-depth characterisation of cross-omic molecular trajectories in pregnancies from a population in a resource-constrained setting. Moreover, pregnancy-associated complications and unfavourable pregnancy outcomes will be investigated at the same granular level, with a particular focus on population relevant needs such as effect of tropical infections on pregnancy. More detailed knowledge on multiomic perturbations will ideally result in the development of diagnostic tools and ultimately lead to targeted interventions that may disproportionally benefit pregnant women from this resource-limited population. TRIAL REGISTRATION NUMBER:NCT02797327

    A prospective cohort for the investigation of alteration in temporal transcriptional and microbiome trajectories preceding preterm birth: a study protocol

    No full text
    Introduction Preterm birth (PTB) results from heterogeneous influences and is a major contributor to neonatal mortality and morbidity that continues to have adverse effects on infants beyond the neonatal period. This protocol describes the procedures to determine molecular signatures predictive of PTB through high-frequency sampling during pregnancy, at delivery and the postpartum period. Methods and analysis Four hundred first trimester pregnant women from either Myanmar or Thailand of either Karen or Burman ethnicity, with a viable, singleton pregnancy will be enrolled in this non-interventional, prospective pregnancy birth cohort study and will be followed through to the postpartum period. Fortnightly finger prick capillary blood sampling will allow the monitoring of genome-wide transcript abundance in whole blood. Collection of stool samples and vaginal swabs each trimester, at delivery and postpartum will allow monitoring of intestinal and vaginal microbial composition. In a nested case–control analysis, perturbations of transcript abundance in capillary blood as well as longitudinal changes of the gut, vaginal and oral microbiome will be compared between mothers giving birth to preterm and matched cases giving birth to term neonates. Placenta tissue of preterm and term neonates will be used to determine bacterial colonisation as well as for the establishment of coding and non-coding RNA profiles. In addition, RNA profiles of circulating, non-coding RNA in cord blood serum will be compared with those of maternal peripheral blood serum at time of delivery. Ethics and dissemination This research protocol that aims to detect perturbations in molecular trajectories preceding adverse pregnancy outcomes was approved by the ethics committee of the Faculty of Tropical Medicine, Mahidol University in Bangkok, Thailand (Ethics Reference: TMEC 15–062), the Oxford Tropical Research Ethics Committee (Ethics Reference: OxTREC: 33–15) and the local Tak Province Community Ethics Advisory Board. The results of this cooperative project will be disseminated in multiple publications staggered over time in international peer-reviewed scientific journals. Trial registration number NCT02797327; Pre-results

    A prospective cohort for the investigation of alteration in temporal transcriptional and microbiome trajectories preceding preterm birth: a study protocol

    No full text
    Introduction Preterm birth (PTB) results from heterogeneous influences and is a major contributor to neonatal mortality and morbidity that continues to have adverse effects on infants beyond the neonatal period. This protocol describes the procedures to determine molecular signatures predictive of PTB through high-frequency sampling during pregnancy, at delivery and the postpartum period. Methods and analysis Four hundred first trimester pregnant women from either Myanmar or Thailand of either Karen or Burman ethnicity, with a viable, singleton pregnancy will be enrolled in this non-interventional, prospective pregnancy birth cohort study and will be followed through to the postpartum period. Fortnightly finger prick capillary blood sampling will allow the monitoring of genome-wide transcript abundance in whole blood. Collection of stool samples and vaginal swabs each trimester, at delivery and postpartum will allow monitoring of intestinal and vaginal microbial composition. In a nested case–control analysis, perturbations of transcript abundance in capillary blood as well as longitudinal changes of the gut, vaginal and oral microbiome will be compared between mothers giving birth to preterm and matched cases giving birth to term neonates. Placenta tissue of preterm and term neonates will be used to determine bacterial colonisation as well as for the establishment of coding and non-coding RNA profiles. In addition, RNA profiles of circulating, non-coding RNA in cord blood serum will be compared with those of maternal peripheral blood serum at time of delivery. Ethics and dissemination This research protocol that aims to detect perturbations in molecular trajectories preceding adverse pregnancy outcomes was approved by the ethics committee of the Faculty of Tropical Medicine, Mahidol University in Bangkok, Thailand (Ethics Reference: TMEC 15–062), the Oxford Tropical Research Ethics Committee (Ethics Reference: OxTREC: 33–15) and the local Tak Province Community Ethics Advisory Board. The results of this cooperative project will be disseminated in multiple publications staggered over time in international peer-reviewed scientific journals. Trial registration number NCT02797327; Pre-results

    A prospective cohort for the investigation of alteration in temporal transcriptional and microbiome trajectories preceding preterm birth: a study protocol

    No full text
    Introduction Preterm birth (PTB) results from heterogeneous influences and is a major contributor to neonatal mortality and morbidity that continues to have adverse effects on infants beyond the neonatal period. This protocol describes the procedures to determine molecular signatures predictive of PTB through high-frequency sampling during pregnancy, at delivery and the postpartum period. Methods and analysis Four hundred first trimester pregnant women from either Myanmar or Thailand of either Karen or Burman ethnicity, with a viable, singleton pregnancy will be enrolled in this non-interventional, prospective pregnancy birth cohort study and will be followed through to the postpartum period. Fortnightly finger prick capillary blood sampling will allow the monitoring of genome-wide transcript abundance in whole blood. Collection of stool samples and vaginal swabs each trimester, at delivery and postpartum will allow monitoring of intestinal and vaginal microbial composition. In a nested case–control analysis, perturbations of transcript abundance in capillary blood as well as longitudinal changes of the gut, vaginal and oral microbiome will be compared between mothers giving birth to preterm and matched cases giving birth to term neonates. Placenta tissue of preterm and term neonates will be used to determine bacterial colonisation as well as for the establishment of coding and non-coding RNA profiles. In addition, RNA profiles of circulating, non-coding RNA in cord blood serum will be compared with those of maternal peripheral blood serum at time of delivery. Ethics and dissemination This research protocol that aims to detect perturbations in molecular trajectories preceding adverse pregnancy outcomes was approved by the ethics committee of the Faculty of Tropical Medicine, Mahidol University in Bangkok, Thailand (Ethics Reference: TMEC 15–062), the Oxford Tropical Research Ethics Committee (Ethics Reference: OxTREC: 33–15) and the local Tak Province Community Ethics Advisory Board. The results of this cooperative project will be disseminated in multiple publications staggered over time in international peer-reviewed scientific journals. Trial registration number NCT02797327; Pre-results
    corecore